• 手机麻将辅助软件是真是假

    发布日期:2022-03-02 09:17    点击次数:128

    手机麻将辅助软件是真是假

    有真的也有假的


    假的就是对你需求不关心,直接给你说个时间,然后就跟你要钱


    真的是具体的问你很多细节,包括时间都是没办法给你个固定的,只能给你估个大概的时间


    做这个东西是需要技术实力的


    之前给一个客户做过,他是需要透视


    当时的过程简单还原一下吧


    用Fiddler进行数据截取








    需要从代码层次入手,因为平台采用了加密通讯






    这里面找到CreateRawCall 函数,这个就是收发数据的地方,
    然后再进入这个函数去看看 内部的一些关键代码








    很快就找到了 协议所在的地方,只需要破解了游戏的正常协议通讯规则,就可以模拟游戏APP发送数据包,比如某个牌还没有开出来,这个时候可以通过程序,模拟发送一次开牌 ,提前开牌,这就是这个东西的原理了
    有需要参考下图找我交流














































    """
    Implementation of sequential minimal optimization (SMO) for support vector machines
    (SVM).
    Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
    programming (QP) problem that arises during the training of support vector
    machines.
    It was invented by John Platt in 1998.
    Input:
    0: type: numpy.ndarray.
    1: first column of ndarray must be tags of samples, must be 1 or -1.
    2: rows of ndarray represent samples.
    Usage:
    Command:
    python3 sequential_minimum_optimization.py
    Code:
    from sequential_minimum_optimization import SmoSVM, Kernel
    kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
    init_alphas = np.zeros(train.shape[0])
    SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
    b=0.0, tolerance=0.001)
    SVM.fit()
    predict = SVM.predict(test_samples)
    Reference:
    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
    http://web.cs.iastate.edu/~honavar/smo-svm.pdf
    """




    import os
    import sys
    import urllib.request


    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from sklearn.datasets import make_blobs, make_circles
    from sklearn.preprocessing import StandardScaler


    CANCER_DATASET_URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data"




    class SmoSVM:
    def __init__(
    self,
    train,
    kernel_func,
    alpha_list=None,
    cost=0.4,
    b=0.0,
    tolerance=0.001,
    auto_norm=True,
    ):
    self._init = True
    self._auto_norm = auto_norm
    self._c = np.float64(cost)
    self._b = np.float64(b)
    self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)


    self.tags = train[:, 0]
    self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
    self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
    self.Kernel = kernel_func


    self._eps = 0.001
    self._all_samples = list(range(self.length))
    self._K_matrix = self._calculate_k_matrix()
    self._error = np.zeros(self.length)
    self._unbound = []


    self.choose_alpha = self._choose_alphas()


    # Calculate alphas using SMO algorithm
    def fit(self):
    K = self._k
    state = None
    while True:


    # 1: Find alpha1, alpha2
    try:
    i1, i2 = self.choose_alpha.send(state)
    state = None
    except StopIteration:
    print("Optimization done!\nEvery sample satisfy the KKT condition!")
    break

    打麻将要养成记牌的习惯,要记住各家打了哪些牌,吃过什么牌、碰过什么牌、杠过什么牌?尤其是在进人听牌阶段,更应记住各家摸打牌的顺序。大家都知道付露牌是最方便、最直接的侦察对象,对此是不能放过的。侦察所得的情况是分析的基础,侦察的情况都记不住,分析就无从进行,心中无数,决心难下,还会造成判断失误。

    如起手配牌后,一九牌占多数,可预先打全带么、混么九、清么九或十三么等番种。当来牌发生变化,屡进中间序数牌后,就要改打全带五、全中之类的番种名目。又如起手配牌后,手牌中数字大的序数牌占多数,拟打全大,但随后屡进数字小的牌,下家又在引诱数字小的牌,则可改打全小或全带么。